论文标题
平衡离散平面曲线的稳定性问题
Stability problem of equilibrium discrete planar curves
论文作者
论文摘要
在本文中,我们从变异方法研究平面多边形曲线。我们通过从长度函数的第一个变化中提取离散曲率向量的概念来展示离散曲线和施泰纳型公式的统一解释。此外,我们确定在区域约束条件下长度功能的平衡曲线并研究其稳定性。
In this paper, we study planar polygonal curves from the variational methods. We show an unified interpretation of discrete curvatures and the Steiner-type formula by extracting the notion of the discrete curvature vector from the first variation of the length functional. Moreover, we determine the equilibrium curves for the length functional under the area-constraint condition and study their stability.