论文标题
相对论的有限温度多流体流体动力学在中子星中的多流体动力学。
Relativistic finite temperature multifluid hydrodynamics in a neutron star from a variational principle
论文作者
论文摘要
我们开发了一种相对论的多流体动力学,适用于根据卡特的对流变异程序在有限温度下描述中子恒星核心。该模型包括七个流体,考虑了正常和超流体/超导中子和质子,瘦素(电子和妈妈)和熵。将该公式与Gusakov和合作者的非不同相对论多流体流体动力学进行了比较,并证明是等效的。描述了基本的流体动力学之后,将涡流和通量管,相互摩擦,涡流钉,热传导和粘度纳入模型中。然后,在介质尺度上考虑多流体系统,其中各个涡流线和通量管周围的电流很重要,并且该介质理论平均以确定详细的涡旋线/磁通管对宏观镜头“有效”理论的贡献。尽管在平均介观和宏观有效理论之间获得完全一致的一致性,但这种匹配程序在部分成功中取得了成功。匹配过程使我们能够以与冷凝物质物理文献一致的方式来解释中子星内的磁性$ h $ field,并阐明这种解释与以前的天体物理学作品之间的差异。
We develop a relativistic multifluid dynamics appropriate for describing neutron star cores at finite temperatures based on Carter's convective variational procedure. The model includes seven fluids, accounting for both normal and superfluid/superconducting neutrons and protons, leptons (electrons and muons) and entropy. The formulation is compared to the non-variational relativistic multifluid hydrodynamics of Gusakov and collaborators and shown to be equivalent. Vortex lines and flux tubes, mutual friction, vortex pinning, heat conduction and viscosity are incorporated into the model in steps after the basic hydrodynamics is described. The multifluid system is then considered at the mesoscopic scale where the currents around individual vortex lines and flux tubes are important, and this mesoscopic theory is averaged to determine the detailed vortex line/flux tube contributions to the macroscopic "effective" theory. This matching procedure is partially successful, though obtaining full agreement between the averaged mesoscopic and macroscopic effective theory requires discarding subdominant terms. The matching procedure allow us to interpret the magnetic $H$-field inside a neutron star in a way that is consistent with condensed matter physics literature, and to clarify the difference between this interpretation and that in previous astrophysical works.