论文标题

神经数据到文本生成具有动态内容计划

Neural Data-to-Text Generation with Dynamic Content Planning

论文作者

Chen, Kai, Li, Fayuan, Hu, Baotian, Peng, Weihua, Chen, Qingcai, Yu, Hong

论文摘要

近年来,神经数据到文本生成模型已取得了重大进步。但是,这些模型有两个缺点:生成的文本往往会错过一些重要信息,并且它们通常会产生与结构化输入数据不一致的描述。为了减轻这些问题,我们提出了一个具有动态内容计划的神经数据到文本生成模型,名为NDP缩写。 NDP可以利用先前生成的文本从给定的结构化数据中动态选择适当的条目。我们进一步设计了一种具有新颖的目标函数的重建机制,可以从解码器的隐藏状态顺序重构使用的数据的整个输入,这有助于生成的文本的准确性。经验结果表明,就关系生成(RG),内容选择(CS),内容顺序(CO)和BLEU指标而言,NDP比Rotowire数据集上的最先进数据表现出色。人类评估结果表明,所提出的NDP产生的文本比在大多数时候生成的相应的文本要好。并使用拟议的重建机制,可以进一步改善生成的文本的保真度。

Neural data-to-text generation models have achieved significant advancement in recent years. However, these models have two shortcomings: the generated texts tend to miss some vital information, and they often generate descriptions that are not consistent with the structured input data. To alleviate these problems, we propose a Neural data-to-text generation model with Dynamic content Planning, named NDP for abbreviation. The NDP can utilize the previously generated text to dynamically select the appropriate entry from the given structured data. We further design a reconstruction mechanism with a novel objective function that can reconstruct the whole entry of the used data sequentially from the hidden states of the decoder, which aids the accuracy of the generated text. Empirical results show that the NDP achieves superior performance over the state-of-the-art on ROTOWIRE dataset, in terms of relation generation (RG), content selection (CS), content ordering (CO) and BLEU metrics. The human evaluation result shows that the texts generated by the proposed NDP are better than the corresponding ones generated by NCP in most of time. And using the proposed reconstruction mechanism, the fidelity of the generated text can be further improved significantly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源