论文标题
同源性领域界限无环光滑歧管和符号填充物
Homology spheres bounding acyclic smooth manifolds and symplectic fillings
论文作者
论文摘要
在本文中,我们收集各种结构性结果,以确定何时整体同源性$ 3 $ - 球体界限无环光滑$ 4 $ - 歧管,并且何时可以将其升级到Stein歧管。在不同的方向上,我们研究了在$ \ mathbb {c}^2 $中的连接镜头空间的平滑嵌入可以升级到Stein嵌入,并确定这从未发生。
In this paper, we collect various structural results to determine when an integral homology $3$--sphere bounds an acyclic smooth $4$--manifold, and when this can be upgraded to a Stein manifold. In a different direction we study whether smooth embedding of connected sums of lens spaces in $\mathbb{C}^2$ can be upgraded to a Stein embedding, and determined that this never happens.