论文标题
帕金森氏病分类和回归分析的拓扑描述符
Topological Descriptors for Parkinson's Disease Classification and Regression Analysis
论文作者
论文摘要
目前,仍然通过亲自评估和对患者数据的定性分析来诊断出绝大多数患有神经疾病的人类受试者。在本文中,我们建议将拓扑数据分析(TDA)与机器学习工具一起使用,以使帕金森氏病分类和严重性评估的过程自动化。一种自动化,稳定且准确的评估帕金森氏症的方法将在简化患者的诊断并为家庭提供更多时间进行纠正措施时具有重要意义。我们提出了一种方法,该方法将TDA纳入分析帕金森氏病的姿势变化,通过表示持久图像的代表。事实证明,研究系统拓扑的数据是不变的,并且已被证明在歧视任务中表现良好。本文的贡献是双重的。我们提出了一种方法,以1)对患有疾病折磨患者的健康患者进行分类,以及2)诊断疾病的严重程度。我们探讨了所提出的方法在涉及帕金森氏病数据集的应用中,该数据集由健康的,健康的Young和帕金森病患者组成。我们的代码可在https://github.com/itsmeafra/sublevel-set-tda上找到。
At present, the vast majority of human subjects with neurological disease are still diagnosed through in-person assessments and qualitative analysis of patient data. In this paper, we propose to use Topological Data Analysis (TDA) together with machine learning tools to automate the process of Parkinson's disease classification and severity assessment. An automated, stable, and accurate method to evaluate Parkinson's would be significant in streamlining diagnoses of patients and providing families more time for corrective measures. We propose a methodology which incorporates TDA into analyzing Parkinson's disease postural shifts data through the representation of persistence images. Studying the topology of a system has proven to be invariant to small changes in data and has been shown to perform well in discrimination tasks. The contributions of the paper are twofold. We propose a method to 1) classify healthy patients from those afflicted by disease and 2) diagnose the severity of disease. We explore the use of the proposed method in an application involving a Parkinson's disease dataset comprised of healthy-elderly, healthy-young and Parkinson's disease patients. Our code is available at https://github.com/itsmeafra/Sublevel-Set-TDA.