论文标题

无功能自适应优化加速功能电子材料设计

Featureless adaptive optimization accelerates functional electronic materials design

论文作者

Wang, Yiqun, Iyer, Akshay, Chen, Wei, Rondinelli, James M.

论文摘要

在亚稳态状态之间表现出相变的电子材料(例如,具有突然电阻率转换的金属 - 绝缘体过渡材料)是挑战的。对于这些材料,传统的机器学习方法由于数据稀缺和缺乏功能阻碍模型训练而显示出有限的预测能力。在本文中,我们通过利用潜在的可变高斯工艺以及高保真电子结构计算来验证粉红质化剂lacunar spinel家族的验证,从而证明了基于多目标贝叶斯优化的发现策略,以直接绕过这些瓶颈。我们直接并同时学习相位稳定性和带隙可调性,从化学成分单独学习,以有效地发现帕累托阵线设计上的所有出色组合物。以前未识别的电子过渡也从我们的无功能自适应优化引擎中出现。我们的方法很容易将多个属性的优化概括为对复杂多功能材料的共同设计,尤其是在先验数据稀疏的情况下。

Electronic materials exhibiting phase transitions between metastable states (e.g., metal-insulator transition materials with abrupt electrical resistivity transformations) are challenging to decode. For these materials, conventional machine learning methods display limited predictive capability due to data scarcity and the absence of features impeding model training. In this article, we demonstrate a discovery strategy based on multi-objective Bayesian optimization to directly circumvent these bottlenecks by utilizing latent variable Gaussian processes combined with high-fidelity electronic structure calculations for validation in the chalcogenide lacunar spinel family. We directly and simultaneously learn phase stability and band gap tunability from chemical composition alone to efficiently discover all superior compositions on the design Pareto front. Previously unidentified electronic transitions also emerge from our featureless adaptive optimization engine. Our methodology readily generalizes to optimization of multiple properties, enabling co-design of complex multifunctional materials, especially where prior data is sparse.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源