论文标题
智能健康的边缘计算:上下文感知的方法,机遇和挑战
Edge Computing For Smart Health: Context-aware Approaches, Opportunities, and Challenges
论文作者
论文摘要
在全球范围内,提高医疗保健系统的效率是全国最大的兴趣。但是,需要在降低成本的同时向患者提供可扩展的医疗服务是一个具有挑战性的问题。在启用智能医疗保健(S-Health)的最有希望的方法中,是边缘计算功能和下一代无线网络技术,可以提供实时且具有成本效益的患者远程监控。在本文中,我们介绍了用于S-Health应用程序利用多访问边缘计算(MEC)的愿景。我们设想了基于MEC的架构,并讨论它可以带来的好处,以实现网络内和上下文感知的处理,从而满足S-Health的要求。然后,我们提出两个主要功能,可以利用这种体系结构提供有效的数据传输,即多模式数据压缩和基于边缘的功能提取进行事件检测。前者允许有效且低的失真压缩,而后者则确保在紧急申请中确保高可靠性和快速响应。最后,我们讨论了Edge计算可以为未来研究提供的主要挑战和机遇。
Improving efficiency of healthcare systems is a top national interest worldwide. However, the need of delivering scalable healthcare services to the patients while reducing costs is a challenging issue. Among the most promising approaches for enabling smart healthcare (s-health) are edge-computing capabilities and next-generation wireless networking technologies that can provide real-time and cost-effective patient remote monitoring. In this paper, we present our vision of exploiting multi-access edge computing (MEC) for s-health applications. We envision a MEC-based architecture and discuss the benefits that it can bring to realize in-network and context-aware processing so that the s-health requirements are met. We then present two main functionalities that can be implemented leveraging such an architecture to provide efficient data delivery, namely, multimodal data compression and edge-based feature extraction for event detection. The former allows efficient and low distortion compression, while the latter ensures high-reliability and fast response in case of emergency applications. Finally, we discuss the main challenges and opportunities that edge computing could provide and possible directions for future research.