论文标题

$γ$射线的沉积历史

The $γ$-ray deposition histories of core-collapse supernovae

论文作者

Sharon, Amir, Kushnir, Doron

论文摘要

扩展的超新星(SN)弹出物中的$γ$ ray沉积历史主要用于限制IA型SN类型的模型。在这里,我们将此方法扩展到核心爆发SNE,包括剥离的信封(SE; IB/IC/IIB型)和IIP SNE。我们使用文献中的光度法构建降压光曲线,并使用Katz积分来提取$γ$ -Ray的沉积历史记录。对于IA SNE类型,我们恢复了$γ$ -Ray逃生时间的紧密范围,$ t_0 \ oft 30-45 \,\ textrm {d} $,我们找到了一个新的紧密范围$ t_0 \ t_0 \ oft80-140 \,\ textrm {d} $。类型IIP SNE显然与其他SNE类型分开,$ T_0 \ gtrsim400 \,\ textrm {d} $,并且$ T_0 $与合成的$^{56} $ ni Mass之间可能存在负相关。我们发现与Kushnir的结果一致,SENE中合成的$^{56} $ NI的典型质量大于IIP SNE类型的质量。这使这些爆炸的祖先具有相同的初始质量范围。对于IIP类型,我们恢复了$ et $的观察到的$ et $的值,即冷却排放的时间加权集成亮度,我们发现某些SE SNE中的非零$ et $值的提示。我们应用一个简单的$γ$ - 射线辐射传输代码来计算文献中模型的$γ$ ray沉积历史,我们表明观察到的历史是约束模型的强大工具。

The $γ$-ray deposition history in an expanding supernova (SN) ejecta has been mostly used to constrain models for Type Ia SN. Here we expand this methodology to core-collapse SNe, including stripped envelope (SE; Type Ib/Ic/IIb) and Type IIP SNe. We construct bolometric light curves using photometry from the literature and we use the Katz integral to extract the $γ$-ray deposition history. We recover the tight range of $γ$-ray escape times, $t_0\approx30-45\,\textrm{d}$, for Type Ia SNe, and we find a new tight range $t_0\approx80-140\,\textrm{d}$, for SE SNe. Type IIP SNe are clearly separated from other SNe types with $t_0\gtrsim400\,\textrm{d}$, and there is a possible negative correlation between $t_0$ and the synthesized $^{56}$Ni mass. We find that the typical masses of the synthesized $^{56}$Ni in SE SNe are larger than those in Type IIP SNe, in agreement with the results of Kushnir. This disfavours progenitors with the same initial mass range for these explosions. We recover the observed values of $ET$, the time-weighted integrated luminosity from cooling emission, for Type IIP, and we find hints of non-zero $ET$ values in some SE SNe. We apply a simple $ γ$-ray radiation transfer code to calculate the $γ$-ray deposition histories of models from the literature, and we show that the observed histories are a powerful tool for constraining models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源