论文标题

解释残留标量通量的神经网络模型

Interpreting neural network models of residual scalar flux

论文作者

Portwood, Gavin D., Nadiga, Balasubramanya T., Saenz, Juan A., Livescu, Daniel

论文摘要

我们表明,除了提供有效和竞争性的封闭外,当对动态和与身体相关的诊断方面进行分析,人工神经网络(ANN)既可以解释,又可以在不断发展和改善湍流封闭的持续任务中提供有用的见解。 In the context of large-eddy simulations (LES) of a passive scalar in homogeneous isotropic turbulence, exact subfilter fluxes obtained by filtering direct numerical simulations (DNS) are used both to train deep ANN models as a function of filtered variables, and to optimise the coefficients of a turbulent Prandtl number LES closure. \ textIt {a-priori}对子滤光管标量方差转移率的分析表明,学到的ANN模型超过了优化的湍流PrandTL数字闭合和Clark-type梯度模型。接下来,在几个积分时间尺度上,使用每个模型获得\ textit {a-posteriori}解决方案。这些实验揭示了通过单点和多点诊断,与给定滤波器长度尺度相比,与其他子滤光器模型相比,ANN在时间上模型跟踪精确的分辨标量差异,其精度具有更大的精度。最后,我们通过统计地解释了具有差异灵敏度分析的人工神经网络,以表明ANN模型具有让人联想到所谓的“混合模型”的动力学,其中混合模型被理解为既包括结构性和功能成分。除了从此以增强的被动标量符合性能之外,我们还希望这项工作有助于利用神经网络模型作为可解释性,鲁棒性和模型发现的工具。

We show that in addition to providing effective and competitive closures, when analysed in terms of dynamics and physically-relevant diagnostics, artificial neural networks (ANNs) can be both interpretable and provide useful insights in the on-going task of developing and improving turbulence closures. In the context of large-eddy simulations (LES) of a passive scalar in homogeneous isotropic turbulence, exact subfilter fluxes obtained by filtering direct numerical simulations (DNS) are used both to train deep ANN models as a function of filtered variables, and to optimise the coefficients of a turbulent Prandtl number LES closure. \textit{A-priori} analysis of the subfilter scalar variance transfer rate demonstrates that learnt ANN models out-perform optimised turbulent Prandtl number closures and Clark-type gradient models. Next, \textit{a-posteriori} solutions are obtained with each model over several integral timescales. These experiments reveal, with single- and multi-point diagnostics, that ANN models temporally track exact resolved scalar variance with greater accuracy compared to other subfilter flux models for a given filter length scale. Finally, we interpret the artificial neural networks statistically with differential sensitivity analysis to show that the ANN models feature dynamics reminiscent of so-called "mixed models", where mixed models are understood as comprising both a structural and functional component. Besides enabling enhanced-accuracy LES of passive scalars henceforth, we anticipate this work to contribute to utilising neural network models as a tool in interpretability, robustness and model discovery.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源