论文标题

拓扑和威尔逊线:双复制的全球方面

Topology and Wilson lines: global aspects of the double copy

论文作者

Alfonsi, Luigi, White, Chris D., Wikeley, Sam

论文摘要

Kerr-Schild双副本与重力理论的精确解决方案有关。在以前的所有示例中,重力解决方案与Abelian样量规理论对象相关,该对象是线性的。这似乎与散射幅度的双复制副本不一致,其中规格理论的非亚洲性质起着至关重要的作用。此外,尚不清楚是否可以在仪表和重力理论之间匹配经典领域的全局特性(例如非平凡拓扑结构)。在本文中,我们通过明确说明如何将与任意量规组相关的磁性单托克在重力中重复复制到相同的溶液(纯螺母度量),从而阐明了这些问题。我们进一步描述了如何与仪表群的性质无关的双副本对应的两侧上的拓扑信息匹配。这些信息用威尔逊线运算符巧妙地表达,我们通过特定的示例来争论,它们在经典的双复制和BCJ双复制之间提供了有用的桥梁,用于散射幅度。

The Kerr-Schild double copy relates exact solutions of gauge and gravity theories. In all previous examples, the gravity solution is associated with an abelian-like gauge theory object, which linearises the Yang-Mills equations. This appears to be at odds with the double copy for scattering amplitudes, in which the non-abelian nature of the gauge theory plays a crucial role. Furthermore, it is not yet clear whether or not global properties of classical fields - such as non-trivial topology - can be matched between gauge and gravity theories. In this paper, we clarify these issues by explicitly demonstrating how magnetic monopoles associated with arbitrary gauge groups can be double copied to the same solution (the pure NUT metric) in gravity. We further describe how to match up topological information on both sides of the double copy correspondence, independently of the nature of the gauge group. This information is neatly expressed in terms of Wilson line operators, and we argue through specific examples that they provide a useful bridge between the classical double copy and the BCJ double copy for scattering amplitudes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源