论文标题

高斯空间中的尺寸Brunn-Minkowski不平等

The dimensional Brunn-Minkowski inequality in Gauss space

论文作者

Eskenazis, Alexandros, Moschidis, Georgios

论文摘要

令$γ_n$为$ \ mathbb {r}^n $上的标准高斯度量。我们证明,对于每一个对称凸集,$ k,l $ in $ \ mathbb {r}^n $和(0,1)$,$$γ_n(λk+(1-λ)^{\ frac {\ frac {1}} {n}} {n}} \ geq λγ_n(k)^{\ frac {1} {n}}+(1-λ)γ_n(l)^{\ frac {1} {n}},$$,因此解决了Gardner and Zvavitch(2010)提出的问题。这是Lebesgue度量的经典Brunn-Minkowski不平等的高斯类似物。我们还表明,对于固定的$λ\在(0,1)$中,当且仅当$ k = l $时达到平等。

Let $γ_n$ be the standard Gaussian measure on $\mathbb{R}^n$. We prove that for every symmetric convex sets $K,L$ in $\mathbb{R}^n$ and every $λ\in(0,1)$, $$γ_n(λK+(1-λ)L)^{\frac{1}{n}} \geq λγ_n(K)^{\frac{1}{n}}+(1-λ)γ_n(L)^{\frac{1}{n}},$$ thus settling a problem raised by Gardner and Zvavitch (2010). This is the Gaussian analogue of the classical Brunn-Minkowski inequality for the Lebesgue measure. We also show that, for a fixed $λ\in(0,1)$, equality is attained if and only if $K=L$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源