论文标题

先验数字和兰伯特·泰斯利斯功能

Transcendental Numbers and the Lambert-Tsallis Function

论文作者

da Silva, J. L. E., Ramos, R. V.

论文摘要

决定某些数字的算术性质可能是一个非平凡的问题。某些情况是众所周知的,例如exp(1)和w(1),其中w是兰伯特函数,是先验数字。 tsallis q指数,e_q(z)和兰伯特 - tsallis w_q(z)函数,其中q是真正的参数,分别是指数和兰伯特函数的概括。在目前的工作中,我们使用Gelfond-Schneider定理,以显示Q和Z上的算术条件,以使W_Q(Z)和EXP_Q(Z)具有先验性。

To decide upon the arithmetic nature of some numbers may be a non-trivial problem. Some cases are well know, for example exp(1) and W(1), where W is the Lambert function, are transcendental numbers. The Tsallis q-exponential, e_q (z), and the Lambert-Tsallis W_q (z) function, where q is a real parameter, are, respectively, generalizations of the exponential and Lambert functions. In the present work we use the Gelfond-Schneider theorem in order to show the arithmetic conditions on q and z such that W_q (z) and exp_q (z) are transcendental.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源