论文标题
对于不具有四面体对称性的单一融合类别的通用弦网
Generalized string-nets for unitary fusion categories without tetrahedral symmetry
论文作者
论文摘要
字符串 - 网络凝结的Levin-wen模型解释了拓扑阶段如何从物理系统自由度的微观度中出现。但是,原始构造并不适用于所有统一融合类别,因为施加了$ f $ - 符号的一些其他对称性。特别是,许多有趣的统一融合类别没有实现所谓的四面体对称性。在本文中,我们为任意无多重性融合类别的levin-wen模型的广义结构提供了构建,该类别无需这些额外的对称性而起作用。我们明确计算了哈密顿量的矩阵元素,并表明它具有与原始属性相同的属性。
The Levin-Wen model of string-net condensation explains how topological phases emerge from the microscopic degrees of freedom of a physical system. However, the original construction is not applicable to all unitary fusion category since some additional symmetries for the $F$-symbols are imposed. In particular, the so-called tetrahedral symmetry is not fulfilled by many interesting unitary fusion categories. In this paper, we present a generalized construction of the Levin-Wen model for arbitrary multiplicity-free unitary fusion categories that works without requiring these additional symmetries. We explicitly calculate the matrix elements of the Hamiltonian and, furthermore, show that it has the same properties as the original one.