论文标题

4Dflownet:使用深度学习和计算流体动力学的超分辨率4D流MRI

4DFlowNet: Super-Resolution 4D Flow MRI using Deep Learning and Computational Fluid Dynamics

论文作者

Ferdian, Edward, Suinesiaputra, Avan, Dubowitz, David, Zhao, Debbie, Wang, Alan, Cowan, Brett, Young, Alistair

论文摘要

4D流磁共振成像(MRI)是一种新兴的成像技术,其中时空3D血速速度可以在单个非侵入性检查中以全容量覆盖范围捕获。这可以对心脏和伟大血管的血液动力流动参数进行定性和定量分析。图像分辨率的增加将提供更准确性,并可以更好地评估血流,尤其是对于异常流动的患者。但是,这必须与增加成像时间保持平衡。深度学习在生成超级分辨率图像中的最新成功显示了在医学图像中实施的希望。我们利用计算流体动力学模拟来生成流体流量模拟,并将其表示为合成4D流MRI数据。我们构建了培训数据集以模仿其相应的噪声分布的实际4D流MRI数据。我们的新型4Dflownet网络对此合成4D流数据进行了培训,并且能够生成无噪声超级分辨率4D流相图像,其UpSample系数为2。我们还测试了幻影和正常志愿者数据的实际4D流MR图像中的4DFlownet,与正常志愿者数据相当,并显示出可比的结果,并显示出实际流量率的2.8%和1.6的实际流量测量结果。志愿数据分别。

4D-flow magnetic resonance imaging (MRI) is an emerging imaging technique where spatiotemporal 3D blood velocity can be captured with full volumetric coverage in a single non-invasive examination. This enables qualitative and quantitative analysis of hemodynamic flow parameters of the heart and great vessels. An increase in the image resolution would provide more accuracy and allow better assessment of the blood flow, especially for patients with abnormal flows. However, this must be balanced with increasing imaging time. The recent success of deep learning in generating super resolution images shows promise for implementation in medical images. We utilized computational fluid dynamics simulations to generate fluid flow simulations and represent them as synthetic 4D flow MRI data. We built our training dataset to mimic actual 4D flow MRI data with its corresponding noise distribution. Our novel 4DFlowNet network was trained on this synthetic 4D flow data and was capable in producing noise-free super resolution 4D flow phase images with upsample factor of 2. We also tested the 4DFlowNet in actual 4D flow MR images of a phantom and normal volunteer data, and demonstrated comparable results with the actual flow rate measurements giving an absolute relative error of 0.6 to 5.8% and 1.1 to 3.8% in the phantom data and normal volunteer data, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源