论文标题
$ \ mathbb {a}^3 $通过墙壁交叉和渐近学
Higher rank motivic Donaldson-Thomas invariants of $\mathbb{A}^3$ via wall-crossing, and asymptotics
论文作者
论文摘要
我们通过动机隔离式墙壁计算,在$ \ mathbb {a}^3 $上,引号方案的虚拟动机的生成函数,概括为Behrend,Bryan和Szendrői的结果。我们表明,这种动机分区功能会收敛到高斯分布,从而扩展了莫里森的结果。
We compute, via motivic wall-crossing, the generating function of virtual motives of the Quot scheme of points on $\mathbb{A}^3$, generalising to higher rank a result of Behrend, Bryan and Szendrői. We show that this motivic partition function converges to a Gaussian distribution, extending a result of Morrison.