论文标题
非线性扰动稳定运算符的规律性结果
Regularity results of nonlinear perturbed stable-like operators
论文作者
论文摘要
我们考虑了一类完全非线性的内部差异性操作员,其中非局部积分具有两个组件:非分类的一个组件:一个组成部分对应于$α$稳定的运算符,第二个(可能是退化)对应于一类\ textit {septionit {solder Ording}lévyvyvy措施。此类运营商没有全球扩展属性。我们建立了这些运营商解决方案的Hölder规律性,Harnack的不平等和边界Harnack财产。
We consider a class of fully nonlinear integro-differential operators where the nonlocal integral has two components: the non-degenerate one corresponds to the $α$-stable operator and the second one (possibly degenerate) corresponds to a class of \textit{lower order} Lévy measures. Such operators do not have a global scaling property. We establish Hölder regularity, Harnack inequality and boundary Harnack property of solutions of these operators.