论文标题

改善了径向电势的分解边界

Improved Resolvent Bounds for Radial Potentials

论文作者

Vodev, Georgi

论文摘要

我们证明了r d,d $ \ ge $ 3中的schr {Ö} dinger操作员的半经典分解估计,并具有实值的径向电势v $ \ in $ l $ \ infty $(r d)。特别是,我们表明,如果v(x)= o x- $Δ$带有$δ$> 2,那么分辨率的界限是e ch -4/3的形式,具有常数的c> 0。当1 <$Δ$ \ $ \ le $ 2时,我们还会得到分解界限。 -4/($α$+3)。

We prove semiclassical resolvent estimates for the Schr{ö}dinger operator in R d , d $\ge$ 3, with real-valued radial potentials V $\in$ L $\infty$ (R d). In particular, we show that if V (x) = O x --$δ$ with $δ$ > 2, then the resolvent bound is of the form e Ch --4/3 with some constant C > 0. We also get resolvent bounds when 1 < $δ$ $\le$ 2. For slowly decaying $α$-H{ö}lder potentials we get better resolvent bounds of the form e Ch --4/($α$+3) .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源