论文标题

相关电子的全息统一重新归一化组 - i:张量网络方法

Holographic unitary renormalization group for correlated electrons -- I: a tensor network approach

论文作者

Mukherjee, Anirban, Lal, Siddhartha

论文摘要

我们提出了一个统一的框架,用于对相关电子系统的哈密顿量和本元重的重新归如此,从而揭示了电子相关性与许多粒子纠缠之间的相互作用。为此,我们大大扩展了参考文献。我们将RG重新铸造为Hamiltonian Tensor网络的离散流,即,收集了包括Hamiltonian的各种$ 2N $ - 点散射顶点张量。重态化通过单一变换进行,从而通过单粒子本征态的解开来阻止哈密顿迭代。该过程自然结合了量子波动的作用。 RG流动方程具有非平凡的结构,通过频率依赖性动力学自我能量和相关能量显示了反馈机制。各种UV能量尺度之间的相互作用使耦合的RG方程能够流向IR中稳定的固定点。与微观的哈密顿量相比,IR固定点的有效哈密顿量的参数空间和自由度数量减少。重要的是,观察到顶点张量网络来控制表示多个粒子特征状态的系数的张量网络的RG流。特征性的各种多粒子纠缠特征的RG演变又通过系数张量网络量化。通过这种方式,我们表明,URG框架提供了对全息肾上腺素化的微观理解:顶点张量网络的RG流动产生具有许多粒子缠绕度的特征状态系数张量张量网络。我们发现本征态张量网络可容纳费米昂交换引起的符号因素。

We present a unified framework for the renormalisation of the Hamiltonian and eigenbasis of a system of correlated electrons, unveiling thereby the interplay between electronic correlations and many-particle entanglement. For this, we extend substantially the unitary renormalization group (URG) scheme introduced in Refs.\cite{anirbanmotti,anirbanmott2,mukherjee2020}. We recast the RG as a discrete flow of the Hamiltonian tensor network, i.e., the collection of various $2n$-point scattering vertex tensors comprising the Hamiltonian. The renormalisation progresses via unitary transformations that block diagonalizes the Hamiltonian iteratively via the disentanglement of single-particle eigenstates. This procedure incorporates naturally the role of quantum fluctuations. The RG flow equations possess a non-trivial structure, displaying a feedback mechanism through frequency-dependent dynamical self-energies and correlation energies. The interplay between various UV energy scales enables the coupled RG equations to flow towards a stable fixed point in the IR. The effective Hamiltonian at the IR fixed point generically has a reduced parameter space, as well as number of degrees of freedom, compared to the microscopic Hamiltonian. Importantly, the vertex tensor network is observed to govern the RG flow of the tensor network that denotes the coefficients of the many-particle eigenstates. The RG evolution of various many-particle entanglement features of the eigenbasis are, in turn, quantified through the coefficient tensor network. In this way, we show that the URG framework provides a microscopic understanding of holographic renormalisation: the RG flow of the vertex tensor network generates a eigenstate coefficient tensor network possessing a many-particle entanglement metric. We find that the eigenstate tensor network accommodates sign factors arising from fermion exchange.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源