论文标题

gan的输入噪声尺寸的影响

Effect of Input Noise Dimension in GANs

论文作者

Padala, Manisha, Das, Debojit, Gujar, Sujit

论文摘要

生成对抗网络(GAN)是迄今为止最成功的生成模型。学习将低维输入噪声映射到数据分布的转换构成了gan的基础。尽管它们已应用于各个领域,但它们容易应对某些挑战,例如模式崩溃和不稳定的培训。为了克服挑战,研究人员提出了新的损失功能,架构和优化方法。在这里的工作中,与以前的方法不同,我们专注于输入噪声及其在这一代中的作用。 我们的目标是定量,定性地研究输入噪声对gan的性能的影响。对于定量度量,通常\ emph {fréchet成立距离(fid)}和\ emph {inception分数(IS)}用作图像数据集的性能度量。我们比较了DCGAN和WGAN-GP的FID的值。我们使用三个不同的图像数据集 - 每个图像集由不同级别的复杂性组成。通过我们的实验,我们表明输入噪声的正确维度取决于所使用的数据集和体系结构。我们还观察到,最先进的绩效指标没有提供足够的有用见解。因此,我们得出的结论是,我们需要进一步的理论分析,以了解低维分布与生成的图像之间的关系。我们还需要更好的绩效措施。

Generative Adversarial Networks (GANs) are by far the most successful generative models. Learning the transformation which maps a low dimensional input noise to the data distribution forms the foundation for GANs. Although they have been applied in various domains, they are prone to certain challenges like mode collapse and unstable training. To overcome the challenges, researchers have proposed novel loss functions, architectures, and optimization methods. In our work here, unlike the previous approaches, we focus on the input noise and its role in the generation. We aim to quantitatively and qualitatively study the effect of the dimension of the input noise on the performance of GANs. For quantitative measures, typically \emph{Fréchet Inception Distance (FID)} and \emph{Inception Score (IS)} are used as performance measure on image data-sets. We compare the FID and IS values for DCGAN and WGAN-GP. We use three different image data-sets -- each consisting of different levels of complexity. Through our experiments, we show that the right dimension of input noise for optimal results depends on the data-set and architecture used. We also observe that the state of the art performance measures does not provide enough useful insights. Hence we conclude that we need further theoretical analysis for understanding the relationship between the low dimensional distribution and the generated images. We also require better performance measures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源