论文标题

Fitzhugh-Nagumo方程的近脉冲溶液在圆柱体表面上

Near-Pulse Solutions of the FitzHugh-Nagumo Equations on Cylindrical Surfaces

论文作者

Talidou, Afroditi, Burchard, Almut, Sigal, Israel Michael

论文摘要

我们引入了Fitzhugh-Nagumo方程的几何扩展,描述了神经轴突中电脉冲传播的传播。在此扩展中,轴突被建模为扭曲的圆柱体,而不是像通常这样做的直线,而脉冲在其表面上传播,就像真实的轴突一样。 我们证明了对标准圆柱体的电脉冲的稳定性以及脉冲样溶液的存在和稳定性,用于扭曲的圆柱体,其半径较小且沿其长度慢慢变化。

We introduce a geometrical extension of the FitzHugh-Nagumo equations describing propagation of electrical impulses in nerve axons. In this extension, the axon is modeled as a warped cylinder, rather than a straight line, as is usually done, while pulses propagate on its surface, as is the case with real axons. We prove the stability of electrical impulses for a standard cylinder and existence and stability of pulse-like solutions for warped cylinders whose radii are small and vary slowly along their lengths.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源