论文标题

通过基于事件的预测控制和基于QP的虚拟约束,四倍的运动

Quadrupedal Locomotion via Event-Based Predictive Control and QP-Based Virtual Constraints

论文作者

Hamed, Kaveh Akbari, Kim, Jeeseop, Pandala, Abhishek

论文摘要

本文旨在开发基于模型预测控制(MPC),二次编程(QP)和虚拟约束的层次非线性控制算法,以实时的方式生成和稳定运动模式,以用于四倍体机器人的动态模型。提出的控制方案的较高水平是基于基于事件的MPC开发的,该MPC计算质量(COM)轨迹的最佳质量中心(COM)轨迹的降低线性倒置摆(LIP)模型,但该模型受净地面压力(GRF)的可行性的可行性。研究了基于事件的MPC方法下还原阶模型的所需目标点的渐近稳定性。结果表明,所提出的MPC方法的基于事件的性质可以显着减轻与MPC技术实时实施相关的计算负担。为了弥合减少和全阶模型之间的差距,基于QP的虚拟约束控制器是在建议的控制方案的较低级别开发的,以强加全阶动力学以跟踪最佳轨迹,同时将所有单个GRF在摩擦锥中。本文的分析结果在数值上证实了22度自由度四足机器人Vision 60的全阶模拟模型,该模型由机器人操纵器增强。本文数值研究了对不同接触模型的拟议控制算法的鲁棒性。

This paper aims to develop a hierarchical nonlinear control algorithm, based on model predictive control (MPC), quadratic programming (QP), and virtual constraints, to generate and stabilize locomotion patterns in a real-time manner for dynamical models of quadrupedal robots. The higher level of the proposed control scheme is developed based on an event-based MPC that computes the optimal center of mass (COM) trajectories for a reduced-order linear inverted pendulum (LIP) model subject to the feasibility of the net ground reaction force (GRF). The asymptotic stability of the desired target point for the reduced-order model under the event-based MPC approach is investigated. It is shown that the event-based nature of the proposed MPC approach can significantly reduce the computational burden associated with the real-time implementation of MPC techniques. To bridge the gap between reduced- and full-order models, QP-based virtual constraint controllers are developed at the lower level of the proposed control scheme to impose the full-order dynamics to track the optimal trajectories while having all individual GRFs in the friction cone. The analytical results of the paper are numerically confirmed on full-order simulation models of a 22 degree of freedom quadrupedal robot, Vision 60, that is augmented by a robotic manipulator. The paper numerically investigates the robustness of the proposed control algorithm against different contact models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源