论文标题

通过Mordell-lang通过密集对的$(\ Mathbb {z},+)$的DP-Minimal扩展

Dp-minimal expansions of $(\mathbb{Z},+)$ via dense pairs via Mordell-Lang

论文作者

Walsberg, Erik

论文摘要

这是对$(\ mathbb {z},+)$的DP最低扩展的分类问题的贡献。令$ s $为$(\ mathbb {z},+)$的密集循环组订单。我们在“密集对”上使用结果来构建$(\ mathbb {z},+,s)$的许多DP最低扩展。这些构造是Mordell-Lang猜想的应用,是$(\ Mathbb {Z},+)$的“非模块化” DP最低扩展的第一个示例。我们从典型地关联了$(\ Mathbb {r},+,+,\ times)$的O-Minimal扩展$ \ Mathcal {r} $,$ \ Mathcal {r} $ - 定义圆圈组$ \ mathbbbb { $(\ mathbb {z},+,s)$的DP-Minimal扩展。 We also construct a "non-modular" dp-minimal expansion of $(\mathbb{Z},+,\mathrm{Val}_p)$ from the character $\mathbb{Z} \to \mathbb{Z}^\times_p$, $k \mapsto \mathrm{exp}(pk)$.

This is a contribution to the classification problem for dp-minimal expansions of $(\mathbb{Z},+)$. Let $S$ be a dense cyclic group order on $(\mathbb{Z},+)$. We use results on "dense pairs" to construct uncountably many dp-minimal expansions of $(\mathbb{Z},+,S)$. These constructions are applications of the Mordell-Lang conjecture and are the first examples of "non-modular" dp-minimal expansions of $(\mathbb{Z},+)$. We canonically associate an o-minimal expansion $\mathcal{R}$ of $(\mathbb{R},+,\times)$, an $\mathcal{R}$-definable circle group $\mathbb{H}$, and a character $\mathbb{Z} \to \mathbb{H}$ to a "non-modular" dp-minimal expansion of $(\mathbb{Z},+,S)$. We also construct a "non-modular" dp-minimal expansion of $(\mathbb{Z},+,\mathrm{Val}_p)$ from the character $\mathbb{Z} \to \mathbb{Z}^\times_p$, $k \mapsto \mathrm{exp}(pk)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源