论文标题
关于星系簇中AGN爆发的能量耦合效率
On the Energy Coupling Efficiency of AGN Outbursts in Galaxy Clusters
论文作者
论文摘要
据信,活动的银河核(AGN)喷气机在解决簇内培养基(ICM)中的冷却流问题中很重要,而详细的机制仍在争论中。在这里,我们介绍了一项有关能量耦合效率的系统研究$η_{\ rm cp} $,这是转移到ICM的AGN喷气能量的一部分。我们首先在两种极端情况下分析$η_{\ rm cp} $的值,并通过使用流体动力模拟在均匀培养基中的球形爆发进行了进一步确认和扩展。我们发现$η_{\ rm cp} $从$ \ sim 0.4 $增加到弱的同位注入到$ \ gtrsim 0.8 $,用于强大的点注入。对于任何给定的爆发能量,我们发现将这两个极端情况分开的两个特征爆发力量。然后,我们研究了具有流体动力学模拟的逼真的ICM中AGN喷射爆发的能量耦合效率,发现喷射爆发与球形爆发本质上不同。对于强大的和弱的喷气爆发,$η_{\ rm cp} $通常约为$ 0.7-0.9 $,部分原因是喷气爆发的非球形性质,从热点产生的后流,从热点产生了反流,从而显着增强了射流ICM ICM的互动。对于强大的爆发,从喷气机转移到ICM的能量的主要部分是由于冲击而消散的,但冲击消散仅占弱爆发的喷射能量的$ \%30 \%$。尽管功能强大和弱爆发都可以有效地加热冷却流量,但强大的热能主导的喷气机最有效地延迟了中央冷却灾难的发作。
Active galactic nucleus (AGN) jets are believed to be important in solving the cooling flow problem in the intracluster medium (ICM), while the detailed mechanism is still in debate. Here we present a systematic study on the energy coupling efficiency $η_{\rm cp}$, the fraction of AGN jet energy transferred to the ICM. We first estimate the values of $η_{\rm cp}$ analytically in two extreme cases, which are further confirmed and extended with a parameter study of spherical outbursts in a uniform medium using hydrodynamic simulations. We find that $η_{\rm cp}$ increases from $\sim 0.4$ for a weak isobaric injection to $\gtrsim 0.8$ for a powerful point injection. For any given outburst energy, we find two characteristic outburst powers that separate these two extreme cases. We then investigate the energy coupling efficiency of AGN jet outbursts in a realistic ICM with hydrodynamic simulations, finding that jet outbursts are intrinsically different from spherical outbursts. For both powerful and weak jet outbursts, $η_{\rm cp}$ is typically around $0.7-0.9$, partly due to the non-spherical nature of jet outbursts, which produce backflows emanating from the hotspots, significantly enhancing the ejecta-ICM interaction. While for powerful outbursts a dominant fraction of the energy transferred from the jet to the ICM is dissipated by shocks, shock dissipation only accounts for $\lesssim 30\%$ of the injected jet energy for weak outbursts. While both powerful and weak outbursts could efficiently heat cooling flows, powerful thermal-energy-dominated jets are most effective in delaying the onset of the central cooling catastrophe.