论文标题

Tajima杂音N-钙化:从异位采样分子数据的推断

The Tajima heterochronous n-coalescent: inference from heterochronously sampled molecular data

论文作者

Cappello, Lorenzo, Veber, Amandine, Palacios, Julia A.

论文摘要

一个基因座的观察到的序列变化向样本的进化史和过去的种群大小动态提供了信息。 Kingman合并用于分子序列变化的生成模型,以推断进化参数。但是,众所周知,该模型下的推断与样本量不能很好地扩展。在这里,我们基于最新的工作,基于较低的分辨率合并过程Tajima Colescent,以模拟纵向样本。尽管金曼(Kingman)合并为标记的个体的血统建模,但异构的塔吉玛(Tajima)合并模拟了通过抽样时间标记的个体的祖先。我们提出了一种基于该模型的有效人群大小轨迹重建的新推理方案,具有提高计算效率的潜力。纵向样品的建模对于应用是必需的(例如,从病毒等快速发展的病原体中的古代DNA和RNA)和统计学上需要的(方差降低和参数可识别性)。我们提出了一种有效的算法来计算可能性,并采用贝叶斯非参数程序来推断人口大小的轨迹。我们提供了一个新的MCMC采样器,以探索tajima的家谱和模型参数的空间。我们将我们的程序与模拟和应用中的最新方法进行了比较。

The observed sequence variation at a locus informs about the evolutionary history of the sample and past population size dynamics. The Kingman coalescent is used in a generative model of molecular sequence variation to infer evolutionary parameters. However, it is well understood that inference under this model does not scale well with sample size. Here, we build on recent work based on a lower resolution coalescent process, the Tajima coalescent, to model longitudinal samples. While the Kingman coalescent models the ancestry of labeled individuals, the heterochronous Tajima coalescent models the ancestry of individuals labeled by their sampling time. We propose a new inference scheme for the reconstruction of effective population size trajectories based on this model with the potential to improve computational efficiency. Modeling of longitudinal samples is necessary for applications (e.g. ancient DNA and RNA from rapidly evolving pathogens like viruses) and statistically desirable (variance reduction and parameter identifiability). We propose an efficient algorithm to calculate the likelihood and employ a Bayesian nonparametric procedure to infer the population size trajectory. We provide a new MCMC sampler to explore the space of heterochronous Tajima's genealogies and model parameters. We compare our procedure with state-of-the-art methodologies in simulations and applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源