论文标题
什么旋转速率在旋转的雷利 - 贝纳德对流中最大化热传输,而prandtl数字大于一个?
What rotation rate maximizes heat transport in rotating Rayleigh-Bénard convection with Prandtl number larger than one?
论文作者
论文摘要
旋转雷利 - 纳德对流中的传热和流结构受雷利($ ra $),prandtl($ pr $)和罗斯比(Rossby)($ ro $)编号的强烈影响。对于$ pr \ gtrsim 1 $和中间旋转率,与非旋转情况相比,传热率增加。我们发现,增加的热传递制度细分为低和高$ ra $数字制度。对于$ ra \ Lessim 5 \ times10^8 $,以给定的$ ra $和$ pr $以最佳旋转速率为最高的传热速度,粘性和热边界层的厚度大致相等。从热和粘性边界层厚度的缩放关系中,我们得出最佳旋转速率缩放为$ 1/ro_ \ mathrm {opt} \大约0.12 pr^{1/2} ra^{1/6} $。在低$ ra $状态下,在具有不同纵横比的周期域和圆柱形细胞中,传热是相似的,即直径与高度的比率。这与以下观点一致:垂直排列的涡旋是主要的流动结构。对于$ ra \ gtrsim 5 \ times10^8 $,最佳旋转速率的上述比例不再成立。事实证明,在高$ ra $制度中,以最佳旋转速率的流量结构与较低的$ ra $有很大不同。令人惊讶的是,对于具有不同纵横比的周期域和圆柱形细胞,高$ ra $制度中的热传递显着不同,这起源于侧壁边界层动力学和相应的二级循环。
The heat transfer and flow structure in rotating Rayleigh-Bénard convection are strongly influenced by the Rayleigh ($Ra$), Prandtl ($Pr$), and Rossby ($Ro$) number. For $Pr\gtrsim 1$ and intermediate rotation rates, the heat transfer is increased compared to the non-rotating case. We find that the regime of increased heat transfer is subdivided into a low and a high $Ra$ number regime. For $Ra\lesssim 5\times10^8$ the heat transfer at a given $Ra$ and $Pr$ is highest at an optimal rotation rate, at which the thickness of the viscous and thermal boundary layer is about equal. From the scaling relations of the thermal and viscous boundary layer thicknesses, we derive that the optimal rotation rate scales as $1/Ro_\mathrm{opt} \approx 0.12 Pr^{1/2}Ra^{1/6}$. In the low $Ra$ regime the heat transfer is similar in a periodic domain and cylindrical cells with different aspect ratios, i.e.\ the ratio of diameter to height. This is consistent with the view that the vertically aligned vortices are the dominant flow structure. For $Ra\gtrsim 5\times10^8$ the above scaling for the optimal rotation rate does not hold anymore. It turns out that in the high $Ra$ regime, the flow structures at the optimal rotation rate are very different than for lower $Ra$. Surprisingly, the heat transfer in the high $Ra$ regime differs significantly for a periodic domain and cylindrical cells with different aspect ratios, which originates from the sidewall boundary layer dynamics and the corresponding secondary circulation.