论文标题

在高压下使用固体氢相的最先进的电子结构理论的比较研究

A comparative study using state-of-the-art electronic structure theories on solid hydrogen phases under high pressures

论文作者

Liao, Ke, Li, Xin-Zheng, Alavi, Ali, Grüneis, Andreas

论文摘要

在高压下识别固体的原子结构和特性是高压物理学的一个长期问题,对行星和材料科学具有深远的意义。由于极端条件和组成电子和核的量子机械处理所需的准确性,确定氢的压力温度相对于实验和理论是有挑战性的。在这里,我们明确证明了耦合群集理论可以用作一种计算有效的理论工具,以高精度预测固体氢相。我们在100至450 GPA的压力下介绍了固体氢相的第一原理研究。将计算的静态晶格焓与最先进的扩散蒙特卡洛结果和密度功能理论计算进行了比较。我们对包括C2/C-24和P21/C-24在内的最稳定相的耦合聚类理论结果与使用扩散蒙特卡洛获得的耦合阶段非常吻合,除了CMCA-4外,这预计稳定较小。我们讨论了所采用方法的范围,以及它们如何贡献有效和互补的理论工具,以解决高压下固体氢相的长期困难。

Identifying the atomic structure and properties of solid hydrogen under high pressures is a long-standing problem of high-pressure physics with far-reaching significance in planetary and materials science. Determining the pressure-temperature phase diagram of hydrogen is challenging for experiment and theory due to the extreme conditions and the required accuracy in the quantum mechanical treatment of the constituent electrons and nuclei, respectively. Here, we demonstrate explicitly that coupled cluster theory can serve as a computationally efficient theoretical tool to predict solid hydrogen phases with high accuracy. We present a first principles study of solid hydrogen phases at pressures ranging from 100 to 450 GPa. The computed static lattice enthalpies are compared to state-of-the-art diffusion Monte Carlo results and density functional theory calculations. Our coupled cluster theory results for the most stable phases including C2/c-24 and P21/c-24 are in good agreement with those obtained using diffusion Monte Carlo, with the exception of Cmca-4, which is predicted to be significantly less stable. We discuss the scope of the employed methods and how they can contribute as efficient and complementary theoretical tools to solve the long-standing puzzle of understanding solid hydrogen phases at high pressures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源