论文标题
线性重力中的共形旋转
The Conformal Rotation in Linearised Gravity
论文作者
论文摘要
我们认为爱因斯坦重力的量子力学在平面时期线性线性。度量扰动的两个横向无关组成部分是真正的物理自由度。它们以自由量子场的形式出现在量子理论中。像完整的爱因斯坦动作一样,欧几里得对线性重力的作用在下面没有结合。因此,在Exp {[ - (Action) /\ Hbar]}上,不可能使用该动作将基态波函数表示为欧几里得功能积分。但是,在仅涉及真正的物理自由度的(deparamegrysed)行动上,可以将基态表示为欧几里得的积分。从基态的这种积分表示并使用Faddeev和Popov的技术开始,我们展示了如何为基态波函数构造欧几里得功能积分。该积分明确表现出该理论的仪表对称性,局部性和O(4)不变性。共形因子似乎自然旋转到复杂平面。展示了基态的其他表示。
We consider the quantum mechanics of Einstein gravity linearised about flat spacetime. The two transverse-traceless components of the metric perturbation are the true physical degrees of freedom. They appear in the quantum theory as free quantum fields. Like the full Einstein action, the Euclidean action for linearised gravity is unbounded below. It is therefore not possible to use that action to represent the ground state wave function as a Euclidian functional integral over exp{[-(action) /\hbar]}. However, it is possible to represent the ground state as a Euclidian integral over the (deparametrised) action involving only the true physical degrees of freedom. Starting from this integral representation of the ground state and using the techniques of Faddeev and Popov we show how to construct a Euclidean functional integral for the ground state wave function. The integral explicitly exhibits the theory's gauge symmetry, locality, and O(4) invariance. The conformal factor appears naturally rotated into the complex plane. Other representations of the ground state are exhibited.