论文标题
二分法,用于在有界度图上具有复杂值的同态同构的二分法
Dichotomy for Graph Homomorphisms with Complex Values on Bounded Degree Graphs
论文作者
论文摘要
图同态的复杂性一直是一项激烈研究的主题[11,12,42,21,17,6,20]。分区函数$ z _ {\ mathbf a}(\ cdot)$ of Graph同态由对称矩阵$ \ mathbf a $ over $ \ mathbb c $定义。我们证明[6]的复杂性二分法延伸至有限程度图。更确切地说,我们证明,每$ g $的$ g \ mapsto z _ {\ mathbf a}(g)$是可以在多项式时间内计算的,或者对于某些$δ> 0 $,它是#p-hard for(simple)图形$ g $,带有最大程度$δ(g)(g)\leΔ$。此二分法的$ \ mathbf $ $ a $的障碍性标准是明确的,可以在多项式时间内以$ \ mathbf a $的规模确定。我们还表明,二分法是有效的,因为在各自情况下,可以从$ \ mathbf a $中构建$ z {\ mathbf a} $ z _ {\ mathbf a}(\ cdot)$的p-time算法。
The complexity of graph homomorphisms has been a subject of intense study [11, 12, 4, 42, 21, 17, 6, 20]. The partition function $Z_{\mathbf A}(\cdot)$ of graph homomorphism is defined by a symmetric matrix $\mathbf A$ over $\mathbb C$. We prove that the complexity dichotomy of [6] extends to bounded degree graphs. More precisely, we prove that either $G \mapsto Z_{\mathbf A}(G)$ is computable in polynomial-time for every $G$, or for some $Δ> 0$ it is #P-hard over (simple) graphs $G$ with maximum degree $Δ(G) \le Δ$. The tractability criterion on $\mathbf A$ for this dichotomy is explicit, and can be decided in polynomial-time in the size of $\mathbf A$. We also show that the dichotomy is effective in that either a P-time algorithm for, or a reduction from #SAT to, $Z_{\mathbf A}(\cdot)$ can be constructed from $\mathbf A$, in the respective cases.