论文标题
天气预报的统计后处理 - 大数据世界中的审查,挑战和途径
Statistical Postprocessing for Weather Forecasts -- Review, Challenges and Avenues in a Big Data World
论文作者
论文摘要
如今,统计后处理技术是许多国家气象服务(NMS)中预测套件的关键组成部分,其中大多数人的目的是纠正不同类型的错误对预测的影响。最终目的是为最终用户提供最佳,自动化的无缝预测。现在,在统计,气象,气候,水文和工程社区中,许多技术正在蓬勃发展。这些方法的复杂性范围从简单的偏置校正到非常复杂的分布调整技术,这些技术结合了预后变量之间的相关性。该论文试图总结从理论发展到运营应用程序的这一领域的主要活动,重点关注当前的挑战和潜在的途径。在这些挑战中,NMS的转移向运行集合数值天气预测(NWP)系统的转变,以公里量表产生非常大的数据集并需要高密度高质量的观察结果;保留高维校正场的时空相关性的必要性;减少影响校正参数的模型变化的影响的需求;需要将不同类型的预测和合奏与不同行为合并的必要性;最后,将统计后处理研究转移到操作的能力。还将讨论潜在的新途径。
Statistical postprocessing techniques are nowadays key components of the forecasting suites in many National Meteorological Services (NMS), with for most of them, the objective of correcting the impact of different types of errors on the forecasts. The final aim is to provide optimal, automated, seamless forecasts for end users. Many techniques are now flourishing in the statistical, meteorological, climatological, hydrological, and engineering communities. The methods range in complexity from simple bias corrections to very sophisticated distribution-adjusting techniques that incorporate correlations among the prognostic variables. The paper is an attempt to summarize the main activities going on this area from theoretical developments to operational applications, with a focus on the current challenges and potential avenues in the field. Among these challenges is the shift in NMS towards running ensemble Numerical Weather Prediction (NWP) systems at the kilometer scale that produce very large datasets and require high-density high-quality observations; the necessity to preserve space time correlation of high-dimensional corrected fields; the need to reduce the impact of model changes affecting the parameters of the corrections; the necessity for techniques to merge different types of forecasts and ensembles with different behaviors; and finally the ability to transfer research on statistical postprocessing to operations. Potential new avenues will also be discussed.