论文标题

$ f(\ frac {1} {6},\ frac {5} {6} {6}; \ frac {1} {2} {2}; \ bulter)

Nonelliptic functions from $F(\frac{1}{6}, \frac{5}{6} ; \frac{1}{2} ; \bullet)$

论文作者

Robinson, P. L.

论文摘要

As contributions to the Ramanujan theory of elliptic functions to alternative bases, Li-Chien Shen has developed families of elliptic functions from the hypergeometric functions $F(\tfrac{1}{3}, \tfrac{2}{3}; \tfrac{1}{2} ; \bullet)$ and $ f(\ tfrac {1} {4},\ tfrac {3} {4}; \ tfrac {1} {2} {2}; \ bulter)$。我们将他的方法应用于超几何函数$ f(\ tfrac {1} {6},\ tfrac {5} {6} {6}; \ tfrac {1} {2} {2}; \ bullet)$。

As contributions to the Ramanujan theory of elliptic functions to alternative bases, Li-Chien Shen has developed families of elliptic functions from the hypergeometric functions $F(\tfrac{1}{3}, \tfrac{2}{3}; \tfrac{1}{2} ; \bullet)$ and $F(\tfrac{1}{4}, \tfrac{3}{4}; \tfrac{1}{2} ; \bullet)$. We apply his methods to the hypergeometric function $F(\tfrac{1}{6}, \tfrac{5}{6}; \tfrac{1}{2} ; \bullet)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源