论文标题

能源市场的战略投资:一种多参数编程方法

Strategic Investment in Energy Markets: A Multiparametric Programming Approach

论文作者

Taheri, Sina, Kekatos, Vassilis, Veeramachaneni, Harsha

论文摘要

投资者必须仔细选择其打算建造的新一代单位的位置和规模,因为在市场上增加产能会影响该投资者可能已经拥有的单位的利润。为了捕获这种闭环特征,可以将战略投资(SI)作为双重优化。通过分析研究一个小市场,我们首先表明其目标函数可能是非凸面和不连续的。这项工作意识到现有的混合企业问题配方在较大的市场和越来越多的场景中变得不切实际,因此提出了两个SI求解器:用于处理候选投资位置很少的设置的网格搜索,而随机梯度下降方法否则。这两个求解器都以独特的方式均采用了强大的多参数编程工具箱(MPP)。网格搜索需要找到针对大量最佳功率流(OPF)问题的原始/双重解决方案,尽管如此,由于MPP的属性,可以有效地进行多次计算。相同的特性促进了以迷你批量方式快速计算梯度,从而加速了随机梯度下降搜索的实现。使用现实世界数据对IEEE 118-BUS系统进行测试证实了新型MPP辅助求解器的优势。

An investor has to carefully select the location and size of new generation units it intends to build, since adding capacity in a market affects the profit from units this investor may already own. To capture this closed-loop characteristic, strategic investment (SI) can be posed as a bilevel optimization. By analytically studying a small market, we first show that its objective function can be non-convex and discontinuous. Realizing that existing mixed-integer problem formulations become impractical for larger markets and increasing number of scenarios, this work put forth two SI solvers: a grid search to handle setups where the candidate investment locations are few, and a stochastic gradient descent approach for otherwise. Both solvers leverage the powerful toolbox of multiparametric programming (MPP), each in a unique way. The grid search entails finding the primal/dual solutions for a large number of optimal power flow (OPF) problems, which nonetheless can be efficiently computed several at once thanks to the properties of MPP. The same properties facilitate the rapid calculation of gradients in a mini-batch fashion, thus accelerating the implementation of a stochastic gradient descent search. Tests on the IEEE 118-bus system using real-world data corroborate the advantages of the novel MPP-aided solvers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源