论文标题

材料科学中的群集理论

Coupled cluster theory in materials science

论文作者

Zhang, Igor Ying, Grüneis, Andreas

论文摘要

在这篇教程风格的综述中,我们讨论了耦合聚类理论的基本概念以及最新的发展,以提高其计算分子,固体和材料的计算效率。我们将介绍耦合簇理论与固态物理领域广泛使用的随机相近似之间的联系。我们将讨论各种方法来改善计算性能,而不会损害准确性。这些方法包括大规模的平行设计以及降低计算复杂性事前的技术。本文的中心部分讨论了计算的性质与热力学极限的收敛性,这对于可靠的材料特性预测至关重要,与大分子的计算相比,构成了额外的挑战。我们提到了在单电子轨道基础的不同数值框架中定期耦合群集理论的计算机代码实现的技术方面;使用平面波基集和具有认同分辨率的数字原子轨道(NAO)的投影仪增强的波形形式。我们将讨论这些实现的结果以及可能的范围,以及它们如何帮助推进材料的电子结构理论计算中的当前最新状态。

In this tutorial-style review we discuss basic concepts of coupled cluster theory and recent developments that increase its computational efficiency for calculations of molecules, solids and materials in general. We will touch upon the connection between coupled cluster theory and the random-phase approximation that is widely used in the field of solid-state physics. We will discuss various approaches to improve the computational performance without compromising on accuracy. These approaches include large-scale parallel design as well as techniques that reduce the pre-factor of the computational complexity. A central part of this article discusses the convergence of calculated properties to the thermodynamic limit, which is of significant importance for reliable predictions of materials properties and constitutes an additional challenge compared to calculations of large molecules. We mention technical aspects of computer code implementations of periodic coupled cluster theories in different numerical frameworks of the one-electron orbital basis; the projector-augmented-wave formalism using a plane wave basis set and the numeric atom-centered-orbital (NAO) with resolution-of-identity. We will discuss results and the possible scope of these implementations and how they can help advance the current state of the art in electronic structure theory calculations of materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源