论文标题
量化各个自由度的参数下转换状态的纠缠
Quantifying entanglement of parametric down-converted states in all degrees of freedom
论文作者
论文摘要
根据国家的所有自由度,研究了以参数下转换状态存在的纠缠数量。我们通过借助II型相匹配的有助于对下转换的光子进行标记,量化了该状态的施密特数量的纠缠量,该状态数量表示为纯粹的两部分状态。为了促进我们的计算,我们使用了Wigner功能方法,该方法允许整合完整的无限维度时空自由度。认为具有合理可实现的实验条件的定量示例被认为证明了极大的施密特数字是可以实现的。
The amount of entanglement that exists in a parametric down-converted state is investigated in terms of all the degrees of freedom of the state. We quantify the amount of entanglement by the Schmidt number of the state, represented as a pure bipartite state by tagging the down-converted photons in terms of orthogonal states of polarization with the aid of type II phase-matching. To facilitate our calculations, we use a Wigner functional approach, which allows the incorporation of the full infinite dimensional spatiotemporal degrees of freedom. A quantitative example with reasonably achievable experimental conditions is considered to demonstrate that extremely large Schmidt numbers are achievable.