论文标题
对称性可观察物的对称诱导的波动关系,无论其在时间倒流下的行为如何
Symmetry-induced fluctuation relations for dynamical observables irrespective of their behaviour under time-reversal
论文作者
论文摘要
我们扩展了以前的工作来描述一类波动关系(FRS),这些波动关系是由于马尔可夫链中随机轨迹级别的对称性而出现的。我们证明,给定这样的对称性,对于适当的动力学可观察,始终有可能在与所谓的广义DOOB变换相对应的偏置动力学下获得FR。我们认为的动力学的一般变换超出了时间交流或空间等法,这意味着FRS的存在是对观察物的存在,无论其在时间逆转下,例如时间对称性观察值而不是电流,而不是时间。我们进一步展示了如何从动力学发电机的对称属性中长期限制这些FRS的时间。我们用四个示例来说明我们的结果,这些例子突出了我们作品的新颖特征。
We extend previous work to describe a class of fluctuation relations (FRs) that emerge as a consequence of symmetries at the level of stochastic trajectories in Markov chains. We prove that given such a symmetry, and for a suitable dynamical observable, it is always possible to obtain a FR under a biased dynamics corresponding to the so-called generalized Doob transform. The general transformations of the dynamics that we consider go beyond time-reversal or spatial isometries, and an implication is the existence of FRs for observables irrespective of their behaviour under time-reversal, for example for time-symmetric observables rather than currents. We further show how to deduce in the long-time limit these FRs from the symmetry properties of the generator of the dynamics. We illustrate our results with four examples that highlight the novel features of our work.