论文标题

使用深二流卷积网络对图像超分辨率进行盲质量评估

Blind Quality Assessment for Image Superresolution Using Deep Two-Stream Convolutional Networks

论文作者

Zhou, Wei, Jiang, Qiuping, Wang, Yuwang, Chen, Zhibo, Li, Weiping

论文摘要

已经提出了许多图像序列(SR)算法,用于从具有较低空间分辨率的输入图像中重建高分辨率(HR)图像。但是,有效评估SR图像的感知质量仍然是一个具有挑战性的研究问题。在本文中,我们提出了基于无参考/盲目的深神网络图像质量评估器(DEEPSRQ)。为了了解各种扭曲的SR图像的更多判别特征表示形式,提出的DeepSRQ是一个两流卷积网络,包括两个子组件,用于扭曲的结构和纹理SR图像。与传统的图像扭曲不同,SR图像的伪影同时会导致图像结构和纹理质量降解。因此,我们选择了捕获SR输入的不同属性的两流方案,而不是直接从一个图像流中学习功能。考虑到人类视觉系统(HVS)特征,结构流着重于在结构降解中提取特征,而纹理流则集中在纹理分布的变化上。此外,为了增加培训数据并确保类别的平衡,我们提出了一种基于大步的自适应种植方法,以进一步改进。与最先进的图像质量评估算法相比,三个公开可获得的SR图像质量数据库的实验结果证明了我们所提出的DEEPSRQ方法的有效性和概括能力。

Numerous image superresolution (SR) algorithms have been proposed for reconstructing high-resolution (HR) images from input images with lower spatial resolutions. However, effectively evaluating the perceptual quality of SR images remains a challenging research problem. In this paper, we propose a no-reference/blind deep neural network-based SR image quality assessor (DeepSRQ). To learn more discriminative feature representations of various distorted SR images, the proposed DeepSRQ is a two-stream convolutional network including two subcomponents for distorted structure and texture SR images. Different from traditional image distortions, the artifacts of SR images cause both image structure and texture quality degradation. Therefore, we choose the two-stream scheme that captures different properties of SR inputs instead of directly learning features from one image stream. Considering the human visual system (HVS) characteristics, the structure stream focuses on extracting features in structural degradations, while the texture stream focuses on the change in textural distributions. In addition, to augment the training data and ensure the category balance, we propose a stride-based adaptive cropping approach for further improvement. Experimental results on three publicly available SR image quality databases demonstrate the effectiveness and generalization ability of our proposed DeepSRQ method compared with state-of-the-art image quality assessment algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源