论文标题
本地模型特征转换
Local Model Feature Transformations
论文作者
论文摘要
本地学习方法是一类流行的机器学习算法。整个干部的基本思想是选择一些非本地模型家族,在相邻数据的小部分上训练其中的许多家族,然后以某种方式将结果模型一起“缝制”。由于将培训数据集限制为小社区的局限性,对本地学习模型的研究很大程度上仅限于简单的模型家族。同样,由于简单的模型家族没有设计的复杂结构,因此对各个本地模型的使用有限使用来预测任务。我们假设,使用足够复杂的本地模型家族,可以将各个本地模型的各种特性(例如其学习的参数)用作进一步学习的功能。这项论文改善了当前的研究状态,并致力于通过研究算法来定位更复杂的模型家族的定位,并通过将其应用超出预测作为特征提取机制来建立这一假设。我们总结了这种通用技术,即使用本地模型作为特征提取步骤,其中``本地模型特征转换''一词。在本文档中,我们将本地建模范式扩展到高斯流程,正交四边形模型和单词嵌入模型,并扩展局部线性分类器的现有理论。然后,我们演示了从脑电图读数,通过胸部加速度计量计,3D表面重建,3D点云分割,手写数字分类和事件检测从Twitter feeds进行的,通过胸部加速度测量,3D表面重建,3D表面重建,从Twitter提要进行的,将局部模型特征转换的应用到癫痫事件分类。
Local learning methods are a popular class of machine learning algorithms. The basic idea for the entire cadre is to choose some non-local model family, to train many of them on small sections of neighboring data, and then to `stitch' the resulting models together in some way. Due to the limits of constraining a training dataset to a small neighborhood, research on locally-learned models has largely been restricted to simple model families. Also, since simple model families have no complex structure by design, this has limited use of the individual local models to predictive tasks. We hypothesize that, using a sufficiently complex local model family, various properties of the individual local models, such as their learned parameters, can be used as features for further learning. This dissertation improves upon the current state of research and works toward establishing this hypothesis by investigating algorithms for localization of more complex model families and by studying their applications beyond predictions as a feature extraction mechanism. We summarize this generic technique of using local models as a feature extraction step with the term ``local model feature transformations.'' In this document, we extend the local modeling paradigm to Gaussian processes, orthogonal quadric models and word embedding models, and extend the existing theory for localized linear classifiers. We then demonstrate applications of local model feature transformations to epileptic event classification from EEG readings, activity monitoring via chest accelerometry, 3D surface reconstruction, 3D point cloud segmentation, handwritten digit classification and event detection from Twitter feeds.