论文标题
斯隆数字天空调查中的星系对 - XIV。星系合并不在基本的金属关系上
Galaxy pairs in the Sloan Digital Sky Survey -- XIV. Galaxy mergers do not lie on the Fundamental Metallicity Relation
论文作者
论文摘要
在最近的观察性研究中,已证明星形星系遵循的关系通常称为基本金属关系(FMR)。这种关系将星系的恒星质量与其恒星形成速率(SFR)及其气相金属性联系起来。具体而言,FMR预测,在给定的恒星质量下的星系对于较高的SFR表现出较低的金属性。这种趋势在质量上与观察到星系对的观测相一致,星系对的观察结果却可以证明具有增加气相金属性稀释和增强的恒星形成活性,而预计分离的降低。在这项工作中,我们表明,尽管与FMR预期具有定性的一致性,但Sloan数字天空调查的星系对中观察到的O/H稀释度比FMR预测的要强。我们得出的结论是,与同伴相互作用的星系的进化阶段未在FMR中编码,因此合并构成了明确定义的异常值。我们发现,仅当分离大于110 kpc时,成对的星系才与FMR一致。最后,我们还使用$ 2 \,\ mathrm {mpc} $,$ n_2 $的星系邻居的数量来量化对的本地环境,并使用预计的分离到第二个最近的星系,$ r_2 $。我们发现,对对第二个伴侣的敏感比对本地星系密度更敏感,而较小的$ r_2 $值显示出较小的SFRS。
In recent observational studies, star-forming galaxies have been shown to follow a relation often dubbed the fundamental metallicity relation (FMR). This relation links the stellar mass of a galaxy with its star formation rate (SFR) and its gas-phase metallicity. Specifically, the FMR predicts that galaxies, at a given stellar mass, exhibit lower metallicities for higher SFRs. This trend is qualitatively consistent with observations of galaxy pairs, which have been robustly shown to experience increasing gas-phase metallicity dilution and enhanced star formation activity with decreasing projected separation. In this work, we show that, despite the qualitative consistency with FMR expectations, the observed O/H dilution in galaxy pairs of the Sloan Digital Sky Survey is stronger than what is predicted by the FMR. We conclude that the evolutionary phase of galaxies interacting with companions is not encoded in the FMR, and thus, mergers constitute a clearly defined population of outliers. We find that galaxies in pairs are consistent with the FMR only when their separation is larger than 110 kpc. Finally, we also quantify the local environment of the pairs using the number of galaxy neighbours within $2\, \mathrm{Mpc}$, $N_2$, and the projected separation to the second closest galaxy, $r_2$. We find that pairs are more sensitive to a second companion than to the local galaxy density, displaying less elevated SFRs with smaller values of $r_2$.