论文标题
在光学频率和高相对稳定性下具有半分钟原子相干性的镊子时钟
A tweezer clock with half-minute atomic coherence at optical frequencies and high relative stability
论文作者
论文摘要
相同量子系统的大型,低渗透,高度相干的集合的制备是量子计量,仿真和信息的许多研究的基础。在这里,我们通过利用镊子捕获的碱 - 地球原子的良好特性来意识到这些特征,同时引入了一种新的混合方法来调整光电位,以平衡可扩展性,高保真状态制备,现场分辨的读数和保存原子相干性。通过这种方法,我们在大约150美元的集合中实现了超过$ 40 $秒的诱捕和光时兴奋状态的寿命。这导致了光学时钟过渡的半分钟原子相干性,对应于$ 10^{16} $的质量因素。这些相干时间和原子数将量子投影噪声的效果降低到与领先的原子系统相当的水平,从而产生了$ 5.2(3)\ times10^{ - 17}〜(τ/s)^{ - τ/s)^{ - 1/2} $的同步tweeezer insemembles。当进一步与此系统中可用的微观控制和读数结合使用时,这些结果为在量身定制的原子阵列的光学时钟过渡上迈出了长寿工程纠缠的道路。
The preparation of large, low-entropy, highly coherent ensembles of identical quantum systems is foundational for many studies in quantum metrology, simulation, and information. Here, we realize these features by leveraging the favorable properties of tweezer-trapped alkaline-earth atoms while introducing a new, hybrid approach to tailoring optical potentials that balances scalability, high-fidelity state preparation, site-resolved readout, and preservation of atomic coherence. With this approach, we achieve trapping and optical clock excited-state lifetimes exceeding $ 40 $ seconds in ensembles of approximately $ 150 $ atoms. This leads to half-minute-scale atomic coherence on an optical clock transition, corresponding to quality factors well in excess of $10^{16}$. These coherence times and atom numbers reduce the effect of quantum projection noise to a level that is on par with leading atomic systems, yielding a relative fractional frequency stability of $5.2(3)\times10^{-17}~(τ/s)^{-1/2}$ for synchronous clock comparisons between sub-ensembles within the tweezer array. When further combined with the microscopic control and readout available in this system, these results pave the way towards long-lived engineered entanglement on an optical clock transition in tailored atom arrays.