论文标题

在手性扰动理论中拟合低能常数的新方法

New method for fitting the low-energy constants in chiral perturbation theory

论文作者

Yang, Qin-He, Guo, Wei, Ge, Feng-Jun, Huang, Bo, Liu, Hao, Jiang, Shao-Zhou

论文摘要

在手性扰动理论中,一组新的临近订单(NLO)和近临界订单(NNLO)低能常数$ l_i^r $和$ c_i^r $。使用新的计算方法使用新的实验数据计算这些值。这种方法将传统的全球拟合和蒙特卡洛方法结合在一起。使用此方法估算了高阶贡献。观察值的理论值在每个手性维度上提供良好的收敛性,除了$πk$散射长度的nnlo值$ a_0^{3/2} $和$ a_0^{1/2} $。 NLO的$ l_i^r $的拟合值与NNLO的新方法接近其结果;即,这些$ l_i^r $在此方法中几乎与订单无关。 $ c_i^r $的估计范围与文献中的范围一致,并给出了它们可能的上限或下限。还给出了$ C_I^r $的某些线性组合的值,它们更可靠。如果一个人知道一个更精确的值$ c_i^r $,则可以通过这些值获得另一个$ c_i^r $。

A new set of the next-to-leading order (NLO) and the next-to-next-to-leading order (NNLO) low-energy constants $L_i^r$ and $C_i^r$ in chiral perturbation theory is obtained. These values are computed using the new experimental data with a new calculation method. This method combines the traditional global fit and Monte Carlo method together. The higher order contributions are estimated with this method. The theoretical values of the observables provide good convergence at each chiral dimension, except for the NNLO values of the $πK$ scattering lengths $a_0^{3/2}$ and $a_0^{1/2}$. The fitted values for $L_i^r$ at NLO are close to their results with the new method at NNLO; i.e., these $L_i^r$ are nearly order-independent in this method. The estimated ranges for $C_i^r$ are consistent with those in the literature, and their possible upper or/and lower boundaries are given. The values of some linear combinations of $C_i^r$ are also given, and they are more reliable. If one knows a more exact value $C_i^r$, another $C_i^r$ can be obtained by these values.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源