论文标题

来自随机脑电图试验的对象分类

Object classification from randomized EEG trials

论文作者

Ahmed, Hamad, Wilbur, Ronnie B, Bharadwaj, Hari M, Siskind, Jeffrey Mark

论文摘要

新的结果表明,通过通过脑电图测量的图像刺激引起的人脑活动的可行性有很强的限制。相当多的先前工作遭受了刺激类别与实验开始以来的时间之间的混淆。当数据集的大小与原始实验相同时,先前尝试使用随机试验来避免这种混杂的尝试无法以统计意义的方式实现上述结果。在这里,我们再次尝试通过随机试验来复制这些实验,这些试验是从单个主题中的每个四十个类别的1,000个刺激呈现的更大(20倍)数据集复制。据我们所知,这是从单个主题中最大的EEG数据收集工作,并且处于可行性的范围。我们以统计学意义的方式获得了分类精度,其精度略高于机会,并进一步评估准确性取决于所使用的分类器,所使用的培训数据的量以及类的数量。达到数据收集的限制而没有实质性的分类精度,这表明该企业的可行性限制。

New results suggest strong limits to the feasibility of classifying human brain activity evoked from image stimuli, as measured through EEG. Considerable prior work suffers from a confound between the stimulus class and the time since the start of the experiment. A prior attempt to avoid this confound using randomized trials was unable to achieve results above chance in a statistically significant fashion when the data sets were of the same size as the original experiments. Here, we again attempt to replicate these experiments with randomized trials on a far larger (20x) dataset of 1,000 stimulus presentations of each of forty classes, all from a single subject. To our knowledge, this is the largest such EEG data collection effort from a single subject and is at the bounds of feasibility. We obtain classification accuracy that is marginally above chance and above chance in a statistically significant fashion, and further assess how accuracy depends on the classifier used, the amount of training data used, and the number of classes. Reaching the limits of data collection without substantial improvement in classification accuracy suggests limits to the feasibility of this enterprise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源