论文标题
不活动时间的分位数回归
Quantile regression on inactivity time
论文作者
论文摘要
对于死亡率数据而言,无活动的时间或损失的寿命涉及当前时间点感兴趣的事件的时间,并且最近出现了作为事件时间数据固有的累积信息的新摘要量度。该摘要措施比传统方法提供了一些好处,包括更直接的解释,而对重型审查的敏感性较小。但是,没有系统的建模方法来推断文献中的分位数不活动时间。在本文中,我们提出了一种回归方法,用于右审查下的不活动时间分布的分位数。建立了回归参数的一致性和渐近正态性。为了避免估计审查下不活动时间分布的概率密度函数,我们提出了一种计算有效的方法,用于估计回归系数估计值的方差 - 可使矩阵。提出了仿真结果,以验证所提出的估计器和测试统计数据的有限样本特性。该方法用来自乳腺癌临床试验的真实数据集说明了该方法。
The inactivity time, or lost lifespan specifically for mortality data, concerns time from occurrence of an event of interest to the current time point and has recently emerged as a new summary measure for cumulative information inherent in time-to-event data. This summary measure provides several benefits over the traditional methods, including more straightforward interpretation yet less sensitivity to heavy censoring. However, there exists no systematic modeling approach to inferring the quantile inactivity time in the literature. In this paper, we propose a regression method for the quantiles of the inactivity time distribution under right censoring. The consistency and asymptotic normality of the regression parameters are established. To avoid estimation of the probability density function of the inactivity time distribution under censoring, we propose a computationally efficient method for estimating the variance-covariance matrix of the regression coefficient estimates. Simulation results are presented to validate the finite sample properties of the proposed estimators and test statistics. The proposed method is illustrated with a real dataset from a clinical trial on breast cancer.