论文标题
耗散性伯特·安萨兹(Bethe Ansatz):损失下量子多体动力学的精确解决方案
Dissipative Bethe Ansatz: Exact Solutions of Quantum Many-Body Dynamics Under Loss
论文作者
论文摘要
我们使用Bethe ANSATZ技术来研究经历损失的耗散系统。该方法允许我们精确计算Liouvillian频谱。这打开了分析计算各种实验相关模型的动力学的可能性,包括遭受一个和两个身体损失的冷原子,耦合的腔阵列与玻色子逃脱腔和腔量子电动力学。作为我们方法的一个例子,我们研究了边界驱动XXZ自旋链中的松弛特性。我们精确地计算了Liouvillian间隙,并通过一种新型的动态耗散相变的方式找到了不同的弛豫率。尽管存在损失,但这种物理上转化为易于轴状态下稳定域壁的形成。此类分析结果以前对于这种类型的系统无法访问。
We use the Bethe Ansatz technique to study dissipative systems experiencing loss. The method allows us to exactly calculate the Liouvillian spectrum. This opens the possibility of analytically calculating the dynamics of a wide range of experimentally relevant models including cold atoms subjected to one and two body losses, coupled cavity arrays with bosons escaping the cavity, and cavity quantum electrodynamics. As an example of our approach we study the relaxation properties in a boundary driven XXZ spin chain. We exactly calculate the Liouvillian gap and find different relaxation rates with a novel type of dynamical dissipative phase transition. This physically translates into the formation of a stable domain wall in the easy-axis regime despite the presence of loss. Such analytic results have previously been inaccessible for systems of this type.