论文标题
旋转轨道耦合系统中电流诱导的角动量传递动力学的理论
Theory of Current-Induced Angular Momentum Transfer Dynamics in Spin-Orbit Coupled Systems
论文作者
论文摘要
由于理解竞争机制对复杂磁体中电流诱导的旋转轨道扭矩的重要性,我们开发了一种统一的电流诱导的旋转轨道耦合动力学理论。该理论描述了固体不同自由度之间的角动量转移,例如电子轨道和自旋,晶格和磁性阶参数。基于自旋和轨道角动量的连续性方程,我们得出了运动方程,这些运动方程与旋转和轨道电流通量和扭矩相关联,描述了角动量在不同自由度之间的转移。然后,我们提出了一个分类方案,以实现磁性双层中电流诱导的扭矩的机理。根据我们的第一原理实施,我们将形式主义应用于两个不同的磁性双层Fe/W(110)和Ni/W(110),它们被选为W的轨道和旋转霍尔的效果相反,并且由此产生的旋转和轨道介导的旋转和轨道介导的扭矩可以相互竞争。我们发现,虽然W的自旋大厅效应引起的旋转扭矩是Fe/W(110)中电流诱导的扭矩的主要机制,但Ni/W(110)中的主要机制是源自W的轨道旋转的轨道扭矩。它可以分别导致负面和正面有效的旋转旋转式旋转式旋转式旋转效果。这清楚地表明,我们的形式主义是研究旋转轨道耦合系统中的角动量传递动力学的理想选择,因为它通过自然地融合了旋转和轨道的自由度,超越了“旋转电流图片”。我们的计算表明,除了旋转和轨道扭矩外,在两个材料系统中,其他贡献(例如界面扭矩和自我诱导的异常扭矩)并不容易忽略。
Motivated by the importance of understanding competing mechanisms to current-induced spin-orbit torque in complex magnets, we develop a unified theory of current-induced spin-orbital coupled dynamics. The theory describes angular momentum transfer between different degrees of freedom in solids, e.g., the electron orbital and spin, the crystal lattice, and the magnetic order parameter. Based on the continuity equations for the spin and orbital angular momenta, we derive equations of motion that relate spin and orbital current fluxes and torques describing the transfer of angular momentum between different degrees of freedom. We then propose a classification scheme for the mechanisms of the current-induced torque in magnetic bilayers. Based on our first-principles implementation, we apply our formalism to two different magnetic bilayers, Fe/W(110) and Ni/W(110), which are chosen such that the orbital and spin Hall effects in W have opposite sign and the resulting spin- and orbital-mediated torques can compete with each other. We find that while the spin torque arising from the spin Hall effect of W is the dominant mechanism of the current-induced torque in Fe/W(110), the dominant mechanism in Ni/W(110) is the orbital torque originating in the orbital Hall effect of W. It leads to negative and positive effective spin Hall angles, respectively, which can be directly identified in experiments. This clearly demonstrates that our formalism is ideal for studying the angular momentum transfer dynamics in spin-orbit coupled systems as it goes beyond the "spin current picture" by naturally incorporating the spin and orbital degrees of freedom on an equal footing. Our calculations reveal that, in addition to the spin and orbital torque, other contributions such as the interfacial torque and self-induced anomalous torque within the ferromagnet are not negligible in both material systems.