论文标题

关于不均匀二芬太汀近似的公制理论:ERDőS-VAALER型结果

On the metric theory of inhomogeneous Diophantine approximation: An Erdős-Vaaler type result

论文作者

Yu, Han

论文摘要

1958年,Szüsz被证明是Khintchine在Diophantine近似方面的不均匀版本。 szüsz的定理指出,对于任何非进攻近似函数$ψ:\ mathbb {n} \ to(0,1/2)$带有$ \ sum_qψ(q)= \ infty $和任何数字$γ和任何数字$γ,$ \ [ w(ψ,γ)= \ {x \ in [0,1]:| Qx-p-γ| <ψ(q) \] 具有完整的Lebesgue度量。从那时起,放松单调性条件的结果很少。在本文中,我们表明,如果$γ$不能很好地通过合理数量近似,那么单调性条件可以被上限条件$ψ(q)= o(q(q(q(\ log log q)^2)^2)^{ - 1} $取代。 \ sqrt {2}。$通常,如果$γ$是不合理的,则$ψ(q)= o(q^{ - 1}(\ log \ log \ log \ log q)^{ - 2})$,此外, \ [ \ left(\ liminf_ {q \ to \ infty} \ sum_ {q = q}^{q^{(\ log q) \] 然后$ w(ψ,γ)$具有完整的lebesgue度量。我们的证明是基于对非理性旋转差异的定量研究。

In 1958, Szüsz proved an inhomogeneous version of Khintchine's theorem on Diophantine approximation. Szüsz's theorem states that for any non-increasing approximation function $ψ:\mathbb{N}\to (0,1/2)$ with $\sum_q ψ(q)=\infty$ and any number $γ,$ the following set \[ W(ψ,γ)=\{x\in [0,1]: |qx-p-γ|< ψ(q) \text{ for infinitely many } q,p\in\mathbb{N}\} \] has full Lebesgue measure. Since then, there are very few results in relaxing the monotonicity condition. In this paper, we show that if $γ$ is can not be approximate by rational numbers too well, then the monotonicity condition can be replaced by the upper bound condition $ψ(q)=O((q(\log\log q)^2)^{-1}).$ In particular, this covers the case when $γ$ is not Liouville, for example $π,e,\ln 2, \sqrt{2}.$ In general, if $γ$ is irrational, $ψ(q)=O(q^{-1}(\log\log q)^{-2})$ and in addition, \[ \left(\liminf_{Q\to\infty} \sum_{q=Q}^{Q^{(\log Q)^{1/8} }}ψ(q)\right)=\infty, \] then $W(ψ,γ)$ has full Lebesgue measure. Our proof is based on a quantitative study of the discrepancy for irrational rotations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源