论文标题
具有数字理论应用的分形预测
Fractal projections with an application in number theory
论文作者
论文摘要
在本文中,我们讨论了几何措施理论与数字理论之间的联系。此方法为有关数字扩展的某些数字理论问题带来了新的观点。除其他结果外,我们表明,对于每个整数$ k,$都有一个$ m> 0 $,这样,如果$ b_1,\ dots,b_k $是大于$ m $的多个独立整数,那么许多整数的base $ b_1,b_1,b_2,b_2,\ dots b_k dots,b_k $扩展都没有任何零数字。
In this paper, we discuss a connection between geometric measure theory and number theory. This method brings a new point of view for some number-theoretic problems concerning digit expansions. Among other results, we showed that for each integer $k,$ there is a number $M>0$ such that if $b_1,\dots,b_k$ are multiplicatively independent integers greater than $M$, there are infinitely many integers whose base $b_1,b_2,\dots,b_k$ expansions all do not have any zero digits.