论文标题

您看到的以及看不到的内容:概率分布的隐藏时刻

What You See and What You Don't See: The Hidden Moments of a Probability Distribution

论文作者

Taleb, Nassim Nicholas

论文摘要

经验分布将其最大值作为自然审查。我们查看“隐藏的尾巴”,即分布的一部分,超过最大值,样本量为$ n $。使用极值理论,我们检查了隐藏尾巴的属性,并计算其订单$ p $的力矩。该方法对于显示一个给定的$ n $的偏差在可见的样本中的平均值与真实统计平均值(或更高的矩(或更高的矩)之间的偏见非常有用,对于$α$来说是相当大的,对于$α$来说是相当大的。除其他属性外,我们注意到“隐藏的”瞬间$ 0 $ 0,即$ 0 $,也就是说,$ 0,即$ 0,即$} $} $} $} $。不论尺度和尾部指数的参数化。

Empirical distributions have their in-sample maxima as natural censoring. We look at the "hidden tail", that is, the part of the distribution in excess of the maximum for a sample size of $n$. Using extreme value theory, we examine the properties of the hidden tail and calculate its moments of order $p$. The method is useful in showing how large a bias one can expect, for a given $n$, between the visible in-sample mean and the true statistical mean (or higher moments), which is considerable for $α$ close to 1. Among other properties, we note that the "hidden" moment of order $0$, that is, the exceedance probability for power law distributions, follows an exponential distribution and has for expectation $\frac{1}{n}$ regardless of the parametrization of the scale and tail index.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源