论文标题
原子线的缺陷和拓扑超导率在非常规超导体中
Atomic line defects and topological superconductivity in unconventional superconductors
论文作者
论文摘要
拓扑超导体(TSC)是与量子状态的相关量子状态,同时具有偏高的长距离顺序和非平凡的拓扑不变性。它们产生无间隙或零的能量边界激发,包括Majorana零模式和手性Majoraana边缘状态,具有拓扑保护的相位相干性对于耐断层量子计算必不可少。候选TSC本质上非常罕见。在这里,我们提出了一条新的途径,以自然嵌入的量子结构(例如在非常规的旋转旋转s $ s $ - $ s $ - 波和$ d $ d $ - 波 - 波超级导体中的原子线缺陷)中的新兴途径(1D)TSC。我们表明,由于缺失的原子而导致的反转对称性破坏和电荷传递导致占用初期的杂质带,以及跨越线路缺陷的相邻电子的混合奇异旋转旋转旋转旋转和三胞胎库珀配对。非平凡的拓扑不变式出现并占据参数空间的很大一部分,包括由于施加的磁场或缺陷诱导的磁性而导致的时空对称破坏Zeeman耦合,在不同的拓扑类别中与鲁棒的Majorana零模式在线缺陷的两端创建了TSC。除了提供一种新的机制,可以在单层FE(TE,SE,SE)超导体中在原子线缺陷的两端发现零能量状态的新机制外,这些发现还为使用无效的超级辅助能量和大型配对的嵌入式量子结构和大型配对的嵌入式量子结构对最简单和最强大的1D TSC进行了新的材料实现铺平了道路。
Topological superconductors (TSCs) are correlated quantum states with simultaneous off-diagonal long-range order and nontrivial topological invariants. They produce gapless or zero energy boundary excitations, including Majorana zero modes and chiral Majorana edge states with topologically protected phase coherence essential for fault-tolerant quantum computing. Candidate TSCs are very rare in nature. Here, we propose a novel route toward emergent quasi-one-dimensional (1D) TSCs in naturally embedded quantum structures such as atomic line defects in unconventional spin-singlet $s$-wave and $d$-wave superconductors. We show that inversion symmetry breaking and charge transfer due to the missing atoms lead to the occupation of incipient impurity bands and mixed parity spin singlet and triplet Cooper pairing of neighboring electrons traversing the line defect. Nontrivial topological invariants arise and occupy a large part of the parameter space, including the time reversal symmetry breaking Zeeman coupling due to applied magnetic field or defect-induced magnetism, creating TSCs in different topological classes with robust Majorana zero modes at both ends of the line defect. Beyond providing a novel mechanism for the recent discovery of zero-energy bound states at both ends of an atomic line defect in monolayer Fe(Te,Se) superconductors, the findings pave the way for new material realizations of the simplest and most robust 1D TSCs using embedded quantum structures in unconventional superconductors with large pairing energy gaps and high transition temperatures.