论文标题

SSP:单拍未来的轨迹预测

SSP: Single Shot Future Trajectory Prediction

论文作者

Dwivedi, Isht, Malla, Srikanth, Dariush, Behzad, Choi, Chiho

论文摘要

我们为未来的轨迹预测提供了一种强大的解决方案,该预测实际上可以适用于高度拥挤的环境中的自主代理。为此,本文尤其解决了三个方面。首先,我们使用复合字段来预测所有道路代理的未来位置,这会导致恒定的时间复杂性,而不管场景中的代理数量如何。其次,将代理之间的相互作用建模为非本地响应,从而使不同位置之间的空间关系也被暂时捕获(即在时空相互作用中)。第三,对场景的语义背景进行了建模,并考虑了可能影响未来运动的环境限制。为此,我们使用ETH,UCY和SDD数据集验证了所提出的方法的鲁棒性,并与当前的最新方法相比,突出了其实际功能。

We propose a robust solution to future trajectory forecast, which can be practically applicable to autonomous agents in highly crowded environments. For this, three aspects are particularly addressed in this paper. First, we use composite fields to predict future locations of all road agents in a single-shot, which results in a constant time complexity, regardless of the number of agents in the scene. Second, interactions between agents are modeled as a non-local response, enabling spatial relationships between different locations to be captured temporally as well (i.e., in spatio-temporal interactions). Third, the semantic context of the scene are modeled and take into account the environmental constraints that potentially influence the future motion. To this end, we validate the robustness of the proposed approach using the ETH, UCY, and SDD datasets and highlight its practical functionality compared to the current state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源