论文标题
宽松对和零曲率表示的简介
An introduction to Lax pairs and the zero curvature representation
论文作者
论文摘要
松弛对是找到一些动态系统的保守量的有用工具。在这篇说明性文章中,我们对一对松懈的矩阵$(L,A)$的想法进行了动机介绍,首先是机械系统,例如线性谐波振荡器,Toda链,Eulerian刚性刚体和Rajeev-Ranken模型。然后将其扩展到一维场理论(例如线性波和KDV方程)的LAX运算符,并通过$(u,v)$对重新构成为零的曲率表示,使用非线性schrödinger方程进行了说明。关键思想是将(可能)非线性进化方程视为一对线性方程之间的兼容条件。对于相应的特征功能,后者可能是LAX运算符$ L $的特征值问题,也可能是由$ a $生成的线性进化方程。另外,它们可能是一阶线性系统,该系统指定了相对于1+1维量规势$(v,u)$的任意向量的协变量。兼容性条件是LAX方程$ \ dot l = [l,a] $或平整条件$ u_t -u_x + [u,v] = 0 $,对于相应的规格电位。然后,保守的量从宽松和单肌矩阵的同谱遵循。
Lax pairs are a useful tool in finding conserved quantities of some dynamical systems. In this expository article, we give a motivated introduction to the idea of a Lax pair of matrices $(L,A)$, first for mechanical systems such as the linear harmonic oscillator, Toda chain, Eulerian rigid body and the Rajeev-Ranken model. This is then extended to Lax operators for one-dimensional field theories such as the linear wave and KdV equations and reformulated as a zero curvature representation via a $(U,V)$ pair which is illustrated using the nonlinear Schrödinger equation. The key idea is that of realizing a (possibly) nonlinear evolution equation as a compatibility condition between a pair of linear equations. The latter could be an eigenvalue problem for the Lax operator $L$ and a linear evolution equation generated by $A$, for the corresponding eigenfunction. Alternatively, they could be the first order linear system stating the covariant constancy of an arbitrary vector with respect to the 1+1 dimensional gauge potential $(V,U)$. The compatibility conditions are then either the Lax equation $\dot L = [L, A]$ or the flatness condition $U_t - V_x + [U, V] = 0$ for the corresponding gauge potential. The conserved quantities then follow from the isospectrality of the Lax and monodromy matrices.