论文标题
在绝对连续的不变措施和马尔可夫次要的克里格型
On Absolutely Continuous Invariant Measures and Krieger-Type of Markov Subshifts
论文作者
论文摘要
结果表明,对于拓扑混合的马尔可夫次要换档,与多伯林条件进行了非单明一向的保守移动,唯一可能的绝对连续的转移不变的度量是马尔可夫量度。此外,如果它不等于均质的马尔可夫测度,那么偏移是krieger-type $ \ mathrm {iii} _1 $。包括马尔可夫措施等效的标准。
It is shown that for a non-singular conservative shift on a topologically mixing Markov subshift with Doeblin Condition the only possible absolutely continuous shift-invariant measure is a Markov measure. Moreover, if it is not equivalent to a homogeneous Markov measure then the shift is of Krieger-type $\mathrm{III}_1$. A criterion for equivalence of Markov measures is included.